Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 45: 108660, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36425973

RESUMO

The increasing amount of globally seized controlled substances in combination with the more diverse drugs-of-abuse market encompassing many new psychoactive substances (NPS) provides challenges for rapid and reliable on-site presumptive drug testing. Long-established colorimetric spot tests tend to fail due to the unavailability of reliable tests for novel drugs and to false-positive reactions on commonly encountered substances. In addition, handling of samples and chemicals is required. Spectroscopic techniques do not have these disadvantages as spectra are compound-specific and non-invasive tests are possible. Near-infrared (NIR) spectroscopy is a promising technique for on-scene forensic drug detection. Numerous portable devices were introduced in the market in recent years. However, most handheld spectrometers operate in different and relatively confined wavelength ranges compared to the full 780 - 2500 nm NIR wavelength range. In addition, their spectral resolution is limited compared to benchtop instruments. This dataset presents the NIR spectra of 430 forensic samples, including regularly encountered illicit-drugs, NPS, commonly used adulterants, bulking-agents and excipients, and seized casework materials (powders and tablets). Data is available from 5 different NIR spectrometers; including a benchmark high-resolution, full range 350-2500 nm laboratory grade instrument and 4 portable spectrometers operating in the ranges of 1300-2600 nm, 1550-1950 nm, 950-1650 nm and 740-1070 nm. Via this dataset, spectra of illicit-drugs become available to institutes that typically do not have access to controlled substances. This data can be used to develop chemometric detection and classification models for illicit-drugs and provide insight in diagnostic spectral features that need to be recorded for reliable detection models. Additionally, the high-resolution, full range VIS-NIR spectra of the benchmark ASD instrument can be used for in-silica predictions of spectra in a certain wavelength range to provide insight in the optimal resolution and wavelength range of a prospective portable device.

2.
Energy Fuels ; 32(7): 7347-7357, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30270972

RESUMO

A light oil was separated into four chromatographic fractions that serve as proxy for SARA fractions. The fractions were (semi)quantified on a rod by TLC-flame ionization detection and characterized on a plate with laser desorption ionization-mass spectrometry imaging (TLC-LDI-MS). Comparisons of (semi)quantitative TLC-FID and qualitative TLC-LDI-MS results showed that LDI-MS was most sensitive for detection of molecules in the polar P1 fraction, and, to some extent, for the aromatics fraction, while no signal was observed for the most polar P2 and saturates fractions. Based on these results, limits of the compositional space, as observed by the laser ionization technique, were evaluated. The molecular speciation between and within the spots of the aromatics and the P1 fractions were analyzed and interpreted in terms of oil-SiO2 versus oil-solvent interactions, as a function of molecular characteristics such as DBE, aromaticity (H/C ratio), heteroatom content, degree of alkylation, and shielding of heteroatoms. In addition, the high oil loading resulted in an interesting bifurcation of the aromatics spot, which implies that oil-oil interactions can be enforced and studied in the TLC model system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...